Jacobson radical algebras with Gelfand–Kirillov dimension two over countable fields
نویسندگان
چکیده
منابع مشابه
Rings and Algebras the Jacobson Radical of a Semiring
The concept of the Jacobson radical of a ring is generalized to semirings. A semiring is a system consisting of a set S together with two binary operations, called addition and multiplication, which forms a semigroup relative to addition, a semigroup relative to multiplication, and the right and left distributive laws hold. The additive semigroup of S is assumed to be commutative. The right ide...
متن کاملCentralizers in Domains of Gelfandkirillov Dimension 2
Given an affine domain of Gelfand–Kirillov dimension 2 over an algebraically closed field, it is shown that the centralizer of any non-scalar element of this domain is a commutative domain of Gelfand–Kirillov dimension 1 whenever the domain is not polynomial identity. It is shown that the maximal subfields of the quotient division ring of a finitely graded Goldie algebra of Gelfand– Kirillov di...
متن کاملThe length of Artinian modules with countable Noetherian dimension
It is shown that if $M$ is an Artinian module over a ring $R$, then $M$ has Noetherian dimension $alpha $, where $alpha $ is a countable ordinal number, if and only if $omega ^{alpha }+2leq it{l}(M)leq omega ^{alpha +1}$, where $ it{l}(M)$ is the length of $M$, $i.e.,$ the least ordinal number such that the interval $[0, it{l}(M))$ cannot be embedded in the lattice of all su...
متن کاملAlgebraic Dimension over Frobenius Fields
We prove that each perfect Frobenius field is algebraically bounded and hence has a dimension function in the sense of v.d. Dries on the collection of all definable sets. Given a definable set S over Q (resp. Fp) we can effectively determine for each k ∈ {−∞, 0, 1, . . .} whether there exists a perfect Frobenius fieldM of characteristic 0 (resp., of characteristic p) such that the dimension of ...
متن کاملTwo-Variable Logic over Countable Linear Orderings
We study the class of languages of finitely-labelled countable linear orderings definable in twovariable first-order logic. We give a number of characterisations, in particular an algebraic one in terms of circle monoids, using equations. This generalises the corresponding characterisation, namely variety DA, over finite words to the countable case. A corollary is that the membership in this cl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 2007
ISSN: 0022-4049
DOI: 10.1016/j.jpaa.2006.08.003